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Motto

- Meg(g)y? Nem meg(g)y?
- Meg(g)y, de néha erdltetni kell az igényes matematikai tovabbképzést.
Introduction

Pinter Consulting of Calgary, Alberta practices Mathematics, promotes clear
thinking and offers Consultations, Tutorials and Seminars in Mathematics.
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Chapter 11

Proceedings

11.1 Summary of Current Report
e Private study for professional development:
e Records of activities at Pinter Consulting
e (Collection of problems with our own solutions .

e Continuous improvement, corrections and last revisionOctober 15, 2015.



11.2 Assignment 28.

e Geometry
e Lay: Convex Sets and their Applications

e Last revision October 15, 2015

Problems

1.9. Prove that any finite set is compact.

1.10. For each of the statement below, either prove it is true or show it is
false by a counterexample.

(a) If A is open, then for any set B, A+ B is open.

(b) If A and B are both closed, then A + B is closed.

1.11. Verify the following:
(a) A function f : E™ — E™ is continuous on E" if and only if for each z in
E™ and for each € > 0 there exists a § > 0 such that f(B(z,d)) C B(f(x),e¢).
(b) If f is continuous and zj, is a sequence which converges to z, then

f(xy) converges to f(z).

1.12. Show that f: R — E™ defined by f(\) = Az + (1 — \)y is continuous
for any fixed x, ys E™.

1.13. Let p be a fixed point in E”. Prove that the function f : E™ — R
defined by f(z) = d(x,p) is continuous.

1.14. Let p be a fixed point in E", p = (21, %9, ...7,), T3 + 23...22 > 0.
Prove that the function defined by f(z) = (x,p) is continuous.

1.15. Let f : E® — E™ be a continuous function and suppose A is a
compact subset of E™. Then f(A) = {f(z) : xzeA} is a compact subset of
E™.



11.3 Assignment 29.

Summary

e Power Series
e Henrici, Elemente der Mathematik 378

e Last revision October 15, 2015

Problems

inverse of a certain formal power series
0)
unknowns, say arbitrary complex numbers

01,09 ...

1)

definition

00 02 01 2
vt)=1—oit+Y.
v=2

v—1
Oy, Oy ... 01
2)
definition
01 —1
00 09 01 -2
wt)=1+ot+> | ... .. .. ...
v=2| .. ... ... ... —v+1
Oy Oy ... ... 01




3)
claim
v(t) xw(t) =1
4)
write

o0
wt) =1+ wyt
v=1

where w,, does not depend on t. For example:

w1 = 01
1 01 -1
Wo = —
2! 092 01
1 01 -1
w3 = — |0y 01 —2
3 31 2 1
03 02 01
01 —1
w 1 09 0O1 -2
= —
4' 03 g9 01 —3
o4 03 09 01

5)
write
2 o, 't = o(t)
6)
claim
du(t)
dt pu



7)

01 —1 1 O
oy o1 —2 wy | 0

For example:
n=1
op—w; =0
n=2
o9 + ojw; — 2wy =0

1
o9+ 0101 — 25

01 —1
02 01

=0

n=3
03+02w1+01w2—3w3:0

1 (o5} —1 0
—35 O9 O1 —21=0
03 02 01

g1 —1

o3 + 0901 + 01—
3 201 1 oy oy

2!

Expansion by the last row gives equation.
n=4

o4 + 03wy + 0wy + oywsg — 4wy = 0

o 1 1] 1.0
1 _
U4+O’301+O’25 oy oy |—|—O'13! 09 01 —21=0 (111)
03 029 01
01 —1
1 O9 0O1 —2 .
_41 O3 02 g1 -3 =0

04 03 O2 01

Expansion by the last row gives equation. Recursion for the general case.
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8)

tO’(T)dT
’ Inw(t) = /O )
t T)dt
Xp (/0 o
10) o
11)

= u(t)
< /tU(T)dT)—
exp  — ;

() =

1
. : 3 v+1
01 01 _01
02 ..
Opy—1 ..
oy




11.4 Assignment 30.

Summary
e Higher Arithmetic
e Davenport-Guy

e Last revision October 15, 2015

Problems

Gaussian integers Prove that Gaussian integers have unique factoriza-
tion.



11.5 Assignment 22.

Summary
e Determinants and Quadratic Forms
e Pilya - Szegd: Aufgaben und Lehrsdtze aus der Analysis,

e Last revision October 15, 2015

Problems

Inverse of Hilbert matrix Let {ay,as,...,a,,b1,...,b,} be a set of 2n
distinct real numbers on an interval /. Define an n X n matrix H whose (i, )
entry is

h;; = :
J ai—bj

Let p1, pa, - - ., pn be the Lagrange interpolation polynomials for {ay, as, . .., an},

that is the unique polynomials of degree less than or equal to n — 1 such that
pi(aj) = 5ij7 ’L,j = 1, 2, ..o.n,

where 0;; is the Kronecker delta, explicitely

n

11 (r—ar)  (v—ar)...(x—a;i1)(r—ai1)... (¢ —ay)

k=1,k#i (a; — ay) a (@i —a1)...(a; — ai—1)(@; — @) .. (a; — ap)

pi(z) =

and
p(x)
p'(a;)(z — a;)

which is the conventional notation. Recall that

pi(r) =

ch?,;zl,)...an = {pza Z = 1, . ,n}



is called the Lagrange basis, a collection of n special polynomials of degree
(n — 1) which are 0 or 1 at nodes ay, as, .. .a,. It is customary to assume

either a1 < as < ...<ay,; ora; >as > ...> ay;

and to suppress the dependence of p; on x and nodes. Further, if f is a
polynomial then the linear combination

n

Z f(ai)p;

i=1
approximates f, in fact, agrees with f at the nodes. If f is a polynomial of
degree n — 1 or less then

n

f=> flaip:.
i=1
Similarly, since b;’s are distinct, let ¢y, ..., g, be the Lagrange interpolation
polynomials for {b1,...,b,}. That is, they are the unique polynomials of
degree not exceeding n — 1 with the property that

qi(bj) = di5, 4,5=1,2,...n.
Write ¢(z) = [I;—1(z — bx), ¢ = ¢(z), then these polynomials are defined
explicitely by

n

B (x—b) q
¢(r) = l:g# (b —br)  q(b)(@—by)

These polynomial have the property that, for any polynomial f of degree not
exceeding n — 1, we have

f=

J

f(b)g;-

1

n

Claim: Let matrix H be defined as above
1

ai—bj'

H = [hy], hij =

Then H is invertble, G = H™ 1,

G =lg], 9ij = (a; — bi)p;(bi)gi(a;).

10



Proof:  Write f = p(bx)qx , f is a polynomial of degree n — 1, where

n (I’ — bl)
b, —by)

=

P(bk) =

(bk - al)a dr =

=1 1=1,l#k (

Then

n

p(br)ae = p(be)aw(ai)p:.

=1

Multiplying both sides by % and using the convention on p;

pbe)ar ¢ Pi 1
=Y p(br)ar(a) = = > plb)gr(a:) ——-
p i=1 ( k) k( )p i=1 ( k) k( )p/(ai)(x_ai)
Set x = b;, p(b;) # 0, because a; # b; for i,j7 =1,2,...,n

pk)gr(b;) _ < " LN
b)) P e o

Now, we are ready to make crucial observations. If j = k then the left-hand
side is equal to 1. On the other hand, if j # k then the left-hand side vanishes
because ¢;(b;) = 0 by construction. Moreover,

1
= hy
(bj — a;) ’

so, on the right hand side, we have a scalar product of two vectors, we call
them tentatively v and v},

0 — l_p(bk)%(al) _ p(be)gr(a2) p(bkMk(an)]
p'lar) p'(asz) P (an)

g eey

B [ 1 1 1 ]
Uy = , e .
T L(b = a1) (b — ag) (bj — an)
Let uj, be the k — th row of H™' = G, and v} the j — th column of H then
(Uk, Uj) = O;

and G is the inverse of H. Moreover,

p/(ai> = (ZIZ’ - ai)pi

11



and

= (br — a;)pi(br)
SO
gij = (ai - bk)pi<bk)Qk<ai>
which proves the claim (with some indeces relabeled).

Let a; =7 and b; = 1 — j. Define an n x n Hilbert-matriz H, = [h;;] by

1
hig = o1
J

Claim:  The Hilbert-matriz is invertible, with inverse given by G,, = [g;;]

k=1, k#j =1, I#i

Proof:  First, we factor out a (—1) from each of the (n — 1) factors of the
numerator of the first product, and from the (n—1) factors of the denominator
of the second product, to obtain

Y B Y ) AT
gy =U+1-1) L:ll,_[kséj (J—Fk) ]Lzll,_[l#i (i1 }

Let us simplify the first expression in square braces:

b (i+k-1)
k:ll,_[k;éj (]_k)
_ (i)i+1)...(i+n—1) 1
(i+j—1) G-DG=-2)...0-0-D)U-0G+1)...(G—n)
1 (n+i—1)! 1 1

t+j-1) G- G-DG-0G+1)...0-0U+n—7))
(—=1)"(n +i — 1)!
G+ -DE-DG-DUG+1) —J) .. (G+n—14)—J)
(—=1)"(n +i — 1)!
((+7—DE -G -DAG+1) —5)...((G+n—37)—7)
(1) (n +i — 1)!
(i+7 =10 —Dl(n—j)!
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The second expression in square braces is identical to the first after inter-
changing ¢ and j. Thus the equation

(=) (n+i-1)!
i+ =1 - )0—1Wn—ﬁ!

]l (=D)""(n+j—1)!

s = =g i+ =D - DI = D — 01

simplifies,
(1) (=) = (P = (1)) < (1

because only the parity of the exponent counts, moreover, we can factor out
the duplicate terms

(=1)"(n+i — 1)!
i+ 12— 1)R2(G— e

G = (_1)j+i<i+j_1)<(n+z—1) (i+j—1)! ) ((n+3—1) (Z+j—1)>

(n =)+ =1 (n =)l +j = 1)!

" <@+j—1ﬁﬁinwg_1w>
<n+i—1>_( (n+i—1)!

n—j n—jli+j—1)!

(n::l ) B <n—(nz>+<%j+_yl)— D!

G = @U”%+j—ﬂ<n+ifl><n+jfl>

n-—17 n—1
y ( i+ =2 i+j—2)! )
(i = DG = D= DG = 1)!

it (nim 1Y (2 [i+i-2
gij = (=174 D( n—j )( n—i i1 i—1
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11.6 Trick or Treat.

Summary

e Determinants and Quadratic Forms
e Polya - Szeqd: Aufgaben und Lehrsdtze aus der Analysis,

e Last revision October 15, 2015

Problems
VII 3, Cauchy

1" 25" (a; — ax) (b — by)
ax + by, H}\’i“‘"(a,\ +0b,)
Case n = 2:
1 2 _ (CLQ — al)(bg — bl)
ay -+ bﬂ 1 (CLQ —+ bl)(ag + bz)(al -+ bl)(al -+ bg)
1 1 1 1 1 1
((11 —f bl) (a1 —]|_- 192) _ (Gl =+ bl) ) (ag + bl) (Cll —+ bg) ) (Clg + bg)
(CLQ + bl) (CLQ + bg) (CLQ + bl) (CLQ -+ bg)

(Cl2 + b1) - (a1 + bl) (a1 + 52) - (GQ + b2)
(CLQ + bl)l(al + bl) (CLQ + bz)l(al + bQ)

(az + bl) (CLQ + bg)
a9 — a1 a9 — a1 1 1
(ag +b1)(ar +b1) (a1 +b2)(ag + bo) a2 — I
= a; +0b a; +0b
! ! (az + b1)(as + by) (11 2 (11 2)
(CLQ + bl) (CLQ + bg)
o — aq 1 1 a9 — a1 bg—bl

- (CLQ + bl)((IQ + bg) (a1 + b1> (CLl + bz)) a (CLQ + b1>(a2 + b2) (CLl + bl)((ll + bg)

_ (CL2 - Gl)(bz - bl)
(CLl + bl)(al + b2)(a2 + bl)(a2 + bg)

= Ao/
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Case n = 3:
1 1 1
(a1 41— b)) (a4 —11‘ be) (a4 —11‘ bs3)

(as %1- bi) (ay —1|- by) (ay 41- b3)

((13 + bl) (CL3 -+ bz) (CL3 + bg)
Subtract the n — th row from the first n — 1 rows.
1 1 1 1 1 1

(ay T bi) (as le bi) (a —11- ba)  (as 41- by) (a4 *1F bs)  (as —1|- b3)

(ag -+ bl) 1 (Cl3 + b1> ((12 —+ b2) 1 (CL3 + bg) (CLQ —+ bg) 1 (CL3 -+ bg)

(ag + b1) (CL3 + bg) (&3 + bg)
Then by

1 1 as — ay .
— = k=12 i=1,23
(an +b)  (as+0)  (ap+ b)) (az + by) !

(az —a1) (az —ay) (az —a1)
(CLl -+ b1)<a3 —+ bl) ((11 -+ bg)(&g —+ b2) ((11 -+ b3)(a3 + b3)
(az — ap) (az — ap) (az — ap)

(CLQ + bl)l(ag + bl) ((1,2 + b2)1<a3 + bz) ((12 -+ bg)l(ag + bg)

(a3 —+ bl) ((13 + bg) ((13 + bg)
1 1 1
(a3 — a1)(as — as) (@ J1r o) (e le b) (@ J1r bs) = A;.
(a3 + b1)(as + b2)(as + bs) (as +b1) (as+by) (as+bs)
1 1 1
Next, subtract the n — th column from the first n — 1 columns.
1 _ 1 1 _ 1 1
Aoz (a5 — ay)(as — as) (a1 -1|— bi) (am %1— bs) (a1 le by)  (a -1F bs) (a1 le bs)
(a5 +bu)las +02)(as +05) | (0,50 ™ (ay+bs) (az+02) (az+b5) (a2 +b)
0 0 1
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bs — by bs — by 1
(CLl + bl)(al —+ bg) (CLl -+ bg)(al + bg) (CLl —1|- bg)

(a3 — a1)(az — az)

Az = bz — by bz — by
(a3 + by)(as + by)(as + b3) (as + b1)(as + bs)  (az + ba)(az + bs) (as + b3)
0 0 1
1 1 1
As = | (a3 — a1)(as — az)(bs — b1)(bs — bo) (@ 1 by i b
(a1 + b3)(as + b1)(as + ba)(as + bs)(az + bs) (a2 +b1) (az+ bo)
0 0 1
A, = (a3 — a1)(az — az)(bs — b1)(bs — ba) A,

(a1 -+ bg)(ag -+ bl)(ag + b2)(a3 —+ bg)(CLQ + bg)

Reduction to n = 2.

(az —ay)(az — az)(bs — by)(bs — by) (az —a1)(ba — by) y

B = (a1 + bs)(as + b1)(as + bz)(as + bs)(az + b3) (a1 + br)(a1 + ba2)(az + by)(az + bo)

The general case is as follows. Consider

1 1 1
ap +b a, +b) 7 (a; +b,
(111)(112) (11)

Ap=| (a2 +b) (az+b) ~— (ag+by)
(@, +b1) (an+b) = (an+by)

Subtract the last row from the preceeding rows and take out the following
factors from the columns

1 1 1 1
(an_l'bl)7 (a'n—+’b2)7 (an+bn—1)’ (an+bn)

and the factors

(an —ar), (an — ag),...(an —an_1),1,

from the rows inthe same manner as in case n = 3. Write

1 1 1 1
X ..o X

— X X
Y (an b)) T (an + by) (an +bn1) = (an + by)

n
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and
CY = (ap,—ay) X (a, —ag X ... X (a, —ap_1) x 1.

Mutatis mutandis for the columns: in the remaining determinant subtract
the last column from the preceeding columns and factor out

(b — 1), (b — b2), -+ (b — by, 1

and
1 1 1 1
(al + bn) , (a2 + bn>’ o (an—l + bn)’ (an + bn),

respectively. Write
Cy = (b —by) X (b, —bg) X ... X (by —by_1)

and
1 y 1 y 1 y 1
(a1 +b,)  (az+by) " (an1+0by)  (a,+by)

mn

4 =

There remains a (n — 1)-rowed corner minor of the given determinant

1 1 1 1
(a1 T bi)  (a T b) 1 (am +1bn—1)
An _ C{LC;CQCZ (CLQ -+ bl) (CLQ -+ b2) T (CLQ + bn—l) 1
(an,1 + bl) (an,1 + bz) o (CLn,1 + bnfl)
0 0 0 0 1

Mathematical induction completes the proof.

Define the Hilbert matrix, calculate the determinant, write out
the inverse (Choi, AMM, Vol 90, No. 5, May 1983, pp 301-312).
Here comes a very interesting application of the result above, attributed to
Cauchy. As is well known, the Hilbert - matrixz is defined by

1 i,J=n
An i
14+75—1 i j=1
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