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Motto

- Meg(g)y? Nem meg(g)y?
- Meg(g)y, de néha eröltetni kell az igényes matematikai továbbképzést.

Előszó

Dr. No - vidám és élénk mint egy ifjú. Nýılt, gondolkodásra termett homloka
elpuszt́ıthatatlan derültség és öröm székhelye, a gondolatokban leggazdagabb
beszéd ömlik ajkairól; tréfa, elmésség és hangulat a rendelkezésére állanak és
tańıtó előadása a legszórakoztatóbb tásaság.

- - - -

Introduction

Pinter Consulting of Calgary, Alberta practices Mathematics, promotes clear
thinking and offers Consultations, Tutorials and Seminars in Mathematics.

i



Contents

6 Proceedings 2
6.1 Summary of Current Report . . . . . . . . . . . . . . . . . . . 2
6.2 A Short Essay on Combinatorial Problems . . . . . . . . . . . 3
6.3 Assignment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 Assignment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5 Assignment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 Assignment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.7 Assignment 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.8 Miscellaneous Notes . . . . . . . . . . . . . . . . . . . . . . . . 57

6.8.1 Current interests . . . . . . . . . . . . . . . . . . . . . 57
6.8.2 Envoy . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



Chapter 6

Proceedings

6.1 Summary of Current Report

Private study for professional development:

Records of activities at Pinter Consulting : no extracurricular activities.

Collection of problems with our own solutions: Pólya - Szegő: Aufgaben
und Lehrsätze aus der Analysis, Part One, Chap. 1, Additive Number
Theory, Combinatorial Problems 1-23, and Applications, with a Short
Essay, revised and corrected.

Socratic Programme

• Analysis

• Algebra and Number Theory

• Geometry

• Differential and Integral Equations

Continuos improvement, corrections and last revision January 2, 2015.
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6.2 A Short Essay on Combinatorial Prob-

lems

Summary

• Combinatorial Analysis

• Pólya - Szegő; Riordan

• Last revision January 2, 2015

Formal Power Series

Let F denote the field of real numbers and let x be an indeterminate . Then
the (formal) infinite sum with aiεF, ∀ı, ı ≥ 0 is called a (formal) power series

S(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + . . .

This definition includes polynomials when ai = 0, ı > M,M ≥ 0 . We call
the object a formal power series because we do not assign any value to this
infinite sum. Let

T (x) = b0 + b1x+ b2x
2 + . . .+ bnx

n + . . .

be another (formal) power series . S(x) = T (x) if and only if

a0 = b0, a1 = b1, a2 = b2, . . . an = bn . . . ; ∀n

Further, addition and multiplication are defined for power series by

S(x) + T (x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .+ (an + bn)xn + . . .

and

S(x)T (x) = (a0b0) + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2+

. . .+ (
∑
i+j=n

aibj)x
n + . . . ,

respectively. Write

V (x) = c0 + c1x+ c2x
2 + . . .+ cnx

n + . . . .
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Then the equalities

S(x) + T (x) = T (x) + S(x)

S(x)T (x) = T (x)S(x)

(S(x) + T (x)) + V (x) = S(x) + (T (x) + V (x))

(S(x)T (x))V (x) = S(x)(T (x)V (x))

(S(x)(T (x) + V (x)) = S(x)T (x) + S(x)V (x)

are all valid because the coefficients are taken from F , the field of real num-
bers. Subtraction, the inverse of addition, is defined as well

S(x)− T (x) = (a0 − b0) + (a1 − b1)x+ (a2 − b2)x2 + . . .+ (an − bn)xn + . . .

Therefore the set of all formal power series form a commutative ring.Let us
list the rules of computation in the ring:

1. (i) + is defined, (ii) + is commutative, (iii) + is associative, (iv) + has
an inverse;

2. (i) × is defined, (ii) × is commutative, (iii) × is associative;

3. × is distributive over +;

In fact, we have a module

rS(x) = ra0 + ra1x+ ra2x
2 + . . .+ ranx

n + . . .

There is a unity element for multiplication and a zero element for addition.
Some (formal) power series can have an inverse:

S(x)T (x) = V (x)

(a0 + a1x+ a2x
2 + . . .)(b0 + b1x+ b2x

2 + . . .) = c0 + c1x+ c2x
2 + . . .

or

a0b0 = c0

a1b0 + a0b1 = c1

a2b0 + a1b1 + a0b2 = c2

a3b0 + a2b1 + a1b2 + a0b3 = c3

. . .
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If S(x), V (x) are given and a0 6= 0 then T (x) can be determined by recursion

b0 =
c0
a0
, b1 = a−20 det

[
a0 c0
a1 c1

]
, . . .

or by solving systems of linear equations. For example, to find b3 we need to
solve 

a0 0 0 0
a1 a0 0 0
a2 a1 a0 0
a3 a2 a1 a0



b0
b1
b2
b3

 =


c0
c1
c2
c3


By Cramer’s rule

b3 =

det


a0 0 0 c0
a1 a0 0 c1
a2 a1 a0 c2
a3 a2 a1 c3



det


a0 0 0 0
a1 a0 0 0
a2 a1 a0 0
a3 a2 a1 a0


= a−40 det


a0 0 0 c0
a1 a0 0 c1
a2 a1 a0 c2
a3 a2 a1 c3

 .

By setting V (x) to be the unity element for multiplication

S−1(x) = T (x).

Note also

S(x)T (x) = 0⇒ S(x) = 0 ∨ T (x) = 0

that is the commutative ring of (formal) power series is an integral domain .

Convolution of Formal Power Series

The multiplication of formal power series is also known as faltung or convo-
lution. Consider

S(x)T (x) = (a0b0) + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2+

. . .+ (
∑
i+j=n

aibj)x
n + . . . ,
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We can obtain this result more easily by and assigning to S(x) a certain
lower triangular matrix of infinite dimension

A =


a0 0 0 0 . . .
a1 a0 0 0 . . .
a2 a1 a0 0 . . .
a3 a2 a1 a0 . . .
. . . . . . . . . . . . . . .


and assigning to T (x) a vector of infinite dimension

b =


b0
b1
b2
b3
. . .

 .

Then we multiply matrix A by vector b on the right

Ab = c

to obtain the resultant vector

c =


a0b0

a1b0 + a0b1
a2b0 + a1b1 + a0b2

a3b0 + a2b1 + a1b2 + a0b3
. . .

 =


c0
c1
c2
c3
. . .

 .

Principles of Combinatorial Analysis

Combinatorial Analysis (a.k.a. Combinatorics) is mainly concerned with
problems of discrete sets, such as enumeration of subsets satisfying certain
conditions. The analysis and the construction of discrete sets are much more
difficult in combinatorial analysis than those of infinite sets in real analysis
where we have topology at our disposal.

The most fundamental principles in combinatorial analysis are the fol-
lowing three principles. Let Ω be a finite set and let |A| denote the number
of elements in a subset A of Ω.

1. Rule of sums: If A ∩B = ∅, then |A+B| = |A|+ |B|.
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2. Rule of products: |A × B| = |A| × |B|, where A × B is the direct
product of two sets A and B.

3. Principle of inclusion-exclusion:

|A1 ∪ A2 ∪ . . . ∪ An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|

− . . .+ (−1)n−1|A1 ∩ A2 ∩ . . . ∩ An|.

The Rule of sums can be stated (after Riordan) like this: If an object
A may be chosen in m ways and B in n ways, ”either A or B” may be chosen
in m + n ways. The Rule of products: If an object A may be chosen in
m ways, and thereafter B in n ways, both ”A and B” may be chosen in this
order in mn ways. Principle of inclusion-exclusion: If of N objects N(a)
have property a, N(b) b, . . ., N(ab) both a and b, . . ., N(abc) a, b and c, and
so on, the number N(a′b′c′ . . .) with none of these properties is given by

N(a′b′c′ . . .) = N [(1− a)(1− b)(1− c) . . .]
= N [1− a− b− c . . .+ ab+ ac+ . . .− abc . . .]
= N −N(a)−N(b)−N(c) . . .

+N(ab) +N(ac) . . .+N(bc) . . .

−N(abc)

. . . .

Here we used a symbolic form a′ = 1− a for the complement of a.

Generators

Generators or generating enumerator functions are great computational de-
vices in combinatorial analysis. Let us start with two prototype generators .
The first is

(1 + t)n =
k=n∑
k=0

(
n
k

)
tk =

k=n∑
k=0

akt
k

where

ak = number of unordered selection of k objects out of n unlike objects .
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Let us check this by setting n = 3 with {a, b, c} as the set of 3 unlike objects.

(1 + t)3 = 1 + 3t1 + 3t2 + 1t3

Clearly, a0 = 1 by convention, a1 = 3 because there are 3 choices to make a
selection of 1 element, namely {a}, {b}, {c}. There are 3 choices to make a
unordered selection of 2 elements: {ab}, {ac}, {bc}. Thus a2 = 3. There is
only one unordered selection of all three elements : a3 = 1. Therefore the
coefficients of the expansion are the ordered set of the numbers of unordered
selections of k objects out of n unlike objects, k = 0, 1, 2 . . . n.

Next, let us examine the second prototype generator:

(1 + t)n =
k=n∑
k=0

(
n
k

)
tk =

k=n∑
k=0

ak
k!
tk

where

ak = number of ordered selection of k objects out of n unlike objects .

Again a0 = 1 by convention, a1 = 3× 1! = 3; a2 = 3× 2! = 6. Indeed there
are 6 different ways to select two elements out of three with regard to order.
These are {ab}, {ac}, {ba}, {bc}, {ca}, {cb}. There are 6 different ways how
the three unlike objects can be arranged: {abc}, {acb}, {bac}, {bca}, {cab}, {cba},
thus a3 = 1× 3! = 6. After this illustration we are ready to define

1. Ordinary generating function

A(t) =
k=∞∑
k=0

akt
k,

2. Exponential generating function

E(t) =
k=∞∑
k=0

ak
k!
tk.

The variable, or indeterminate t need not be defined, these two generating
functions are members of the commutative ring of (formal) power series.
However if t is taken as a real or complex number then we have to examine
convergence . If the sequence of ak-s are bounded in the definition of A(t)
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then the sum for A(t) converges for |t| < 1. The sum for E(t) converges for
all t.

It is possible to develop a calculus of generating function , and to explore
their connection to analytic functions , but we will not do that here. Instead,
we will apply formal operations such as the ones we already discussed along
with termwise differentiation and integration if we need them and we will
justify our methods by heuristic arguments.

Some Simple Generators

Here are some simple generators listed in Riordan’s book.

ak A(t) E(t)
ak (1− at)−1 exp(at)
k t(1− t)−2 t exp(t)

k(k − 1) 2t2(1− t)−3 t2 exp(t)
k2 t(t+ 1)(1− t)−3 t(t+ 1) exp(t)

Diophantine Equations

A necessary and sufficient condition for the equation

ax+ by = n

to have integer solution in x, y is that the graetest common factor of a, b
divide n. In particular, if a, b are relative prime numbers then the equation
has an integer solution in x, y. Consider

21x− 17y = 2.

|17| < |21|; y =
21x− 2

17
= x+

4x− 2

17
= x+ u

u =
4x− 2

17
integer

4x− 17u = 2, |4| < |17|, x =
17u+ 2

4
= 4u+

u+ 2

4
= 4u+ v,

v =
u+ 2

4
integer
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u = 4v − 2

x = 4u+ v = 4(4v − 2) + v = 16v − 8 + v = 17v − 8.

y = x+ u = (17v − 8) + (4v − 2) = 21v − 10.

Therefore each set of solution is given by

x = 17v − 8, y = 21v − 10; v = . . . ,−2,−1, 0, 1, 2, . . .

Note that the algorithm terminated in finite steps:

|21| > |17| > |4| > 0.

The typical question in the first Chapter is as follows: What is the number
of solutions to

x+ 2y + 3z = n, x, y, z non-negative integers

The required number is the coefficient ak of tk in the power series expansion
for

1

(1− t)(1− t2)(1− t3)
=

k=∞∑
k=0

akt
k.

The power series can be obtained by the method of partial fractions .

Partial Fractions

Every polynomial

g(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

may be decomposed into irreducible factors

g(x) = a0p
k1
1 p

k2
2 . . . pkll q

kl+1

1 q
kl+2

2 . . . q
kl+m

l+m

where pi, i = 1, 2, . . . l, are irreducible linear polynomials with leading coeffi-
cients equal to unity, and qj, j = 1, 2, . . .m, are irreducible quadratic polyno-
mials with similar leading coefficients. The linear polynomials pi(x) = x−αi
correspond to the real roots of g(x), g(αi) = 0, whereas the quadratic poly-
nomials qj(x) = (x− βj)(x− β̄j = x2− (βj + β̄j)x+ βjβ̄j correspond to pairs
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of complex conjugate roots g(βj) = g(β̄j) = 0. The numbers k1, k2 . . . kl and
kl+1, kl+2 . . . kl+m denote the multiplicity of roots:

k1 + k2 + . . .+ kl + 2(kl+1 + kl+2 . . . kl+m) = n,

guaranteed by the Fundamental Theorem of Algebra . This decomposition is
essentially unique and can be adapted easely when one or more components
are missing. For n = 0, n = 1, respectively

g0(x) = const = a0; g1(x) = ax+ b = a(x+
b

a
).

A rational function is proper if the degree of the numerator is less than the
degree of the denominator:

R(x) =
f(x)

g(x)
=
bmx

m + bm−1x
m−1 + . . .+ b1x+ b0

anxn + an−1xn−1 + . . .+ a1x+ a0
, m < n

Every proper rational function has a unique decomposition into a sum par-
tial fractions . Each partial fraction has for denominator a power of some
irreducible factor. For example

f(x) = 2x4 − 10x3 + 7x2 + 4x+ 3

g(x) = x5 − 2x3 + 2x2 − 3x+ 2 = (x+ 2)(x− 1)2(x2 + 1).

R(x) =
2x4 − 10x3 + 7x2 + 4x+ 3

x5 − 2x3 + 2x2 − 3x+ 2
=

2x4 − 10x3 + 7x2 + 4x+ 3

(x+ 2)(x− 1)2(x2 + 1)

R(x) =
A

x+ 2
+

B

(x− 1)2
+

C

x− 1
+
Dx+ E

x2 + 1

where numbers A,B,C,D,E are to be determined. Write

g(x) = s1(x)(x+ 2) = s2(x)(x− 1)2 = s3(x)(x− 1) = s4(x)(x2 + 1).

Then

R(x) =
As1(x)

(x+ 2)s1(x)
+

Bs2(x)

(x− 1)2s2(x)
+

Cs3(x)

(x− 1)s3(x)
+

(Dx+ E)s4
(x2 + 1)s4

or

R(x) =
As1(x) +Bs2(x) + Cs3(x) + (Dx+ E)s4

g(x)
.

Thus

As1(x) +Bs2(x) + Cs3(x) + (Dx+ E)s4 = f(x)

and A,B,C,D,E can be determined after collecting like terms.
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Binomial Theorem and Series

(a+ b)n =
k=n∑
k=0

(
n
k

)
akbn−k;

(
n
0

)
=

(
n
n

)
= 1

(
n
k

)
=
n(n− 1)(n− 2) . . . (n− k + 1)

k!
=

n!

(n− k)!k!
; n,k integers

(1 + x)α =
k=∞∑
k=0

(
α
k

)
xk; (−1 < x < 1)

(
α
k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
; α real, k integer

Expansions :

(1 + z)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3+

. . .+
α(α− 1)(α− 2) . . . (α− k + 1)

k!
xk + . . .

in particular,

(1 + z)
1
2 = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . .+

Denumerants

Given positive integers

a1, a2, . . . al

p1, p2, . . . pl

find En, the number of solutions to the equation

a1x1 + a2x2 + . . .+ alxl = n

subject to conditions

(I) 0 ≤ x1, 0 ≤ x2, . . . 0 ≤ xl

(II) 0 ≤ x1 ≤ p1, 0 ≤ x2 ≤ p1, . . . 0 ≤ xl ≤ p1

En is called the denumerant (cf.Riordan).
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Solution I.
∞∑
n=0

Entn = (1 + ta1 + t2a1 + t3a1 . . .)(1 + ta2 + t2a2 + t3a2 . . .) . . . (1 + tal + t2al + t3al . . .)

∞∑
n=0

Entn = (1− ta1)−1 (1− ta2)−1 . . . (1− tal)−1 =
P (t)

Q(t)
.

Thus En is the coefficient of tn in the partial fraction expansion of
P (t)

Q(t)
.

Example:

x+ 2y = n

0 ≤ x, 0 ≤ y; a1 = 1, a2 = 2, a3 = . . . al = 0

∞∑
n=0

Ent
n = (1 + t1 + t2 + t3 . . .)(1 + t2 + t4 + t6 . . .)

=
1

(1− t)(1− t2)

=
1

(1− t)(1− t)(1 + t)

=
1

(1− t)2(1 + t)

=
1

2(1− t)2
+

1

4(1− t)
+

1

4(1 + t)
.

1

2(1− t)2
=

1

2
(1 + t1 + t2 + t3 . . .)2

=
1

2
(1 + 2t1 + 3t2 + 4t3 . . .)

=
1

2

∞∑
n=0

(n+ 1)tn.

1

4(1− t)
=

1

4
(1 + t+ t2 + t3 . . .).

1

4(1 + t)
=

1

4
(1− t+ t2 − t3 . . .).
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Upon collecting terms multiplying tn we have for n even

En =
n+ 1

2
+

1

4
+

1

4
=
n+ 2

2
;

and for n odd

En =
n+ 1

2
+

1

4
− 1

4
=
n+ 1

2
.

Solution II.

Applying the matrix mechanics on convolution we have

A =


1
1 1
1 1 1
1 1 1 1
. . . . . . . . . . . . . . .



b =


1
0
1
0
. . .

 ; c =


1
1
2
2
. . .
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Martix-vector multiplication yields the result:

1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1



=



1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11



.
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6.3 Assignment 1.

• Combinatorial Analysis

• Pólya - Szegő: Aufgaben und Lehrsätze aus der Analysis,

• Last revision January 2, 2015

Problems

I.1. In how many ways can you change a dollar? (penny=1, nickel=5,
dime=10, quarter=25, half-dollar=50)

I. 2. Let n stand for a non-negative integer and let An denote the number
of solutions of the Diophantine equation

x+ 5y + 10z + 25u+ 50v = n

in non-negative integers. Then the series

A0 + A1ζ + A2ζ
2 + . . .+ Anζ

n + . . .

represents a rational function. Find it.

Proof: The first two questions will be solved simultaneously. There are x
pieces of pennies, y pieces of nickels, z pieces of dimes etc. amounting to n
cents. The generating function for the selection of pennies is

(1 + ζ + ζ2 + ζ3 + . . .)

by the Rule of Sums .Similarly, the generator for the selection of nickels is

(1 + ζ5 + ζ10 + ζ15 + . . .)

and so forth for the other coins. By the Rule of Products the product of these
functions represents Λ(ζ) , the generator for the change problem

Λ(ζ) = (1 + ζ + ζ2 + ζ3 + . . .)× (1 + ζ5 + ζ10 + ζ15 + . . .)×

(1 + ζ10 + ζ20 + ζ30 + . . .)× (1 + ζ25 + ζ50 + ζ75 + . . .)× (1 + ζ50 + . . .).
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Formal summation yields

(1 + ζ + ζ2 + ζ3 + . . .) =
1

(1− ζ)

(1 + ζ5 + ζ10 + ζ15 + . . .) =
1

(1− ζ5)
, . . . etc.

Therefore the generator

Λ(ζ) =
1

(1− ζ)

1

(1− ζ5)
1

(1− ζ10)
1

(1− ζ25)
1

(1− ζ50)

and can be expanded as

Λ(ζ) = A0 + A1ζ + A2ζ
2 + . . .+ Anζ

n + . . .

The required number is coefficient A100 = 292.
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Numerical Calculation:

D(n;1,2)∑
i=0

qi
∑
j=0

(q2)j =
∑
n=0

D(n; 1, 2)qn

i+ 2j = n



1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1



=



1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11


D(n;1,2,5)∑

i=0

qi
∑
j=0

(q2)j
∑
k=0

(q5)k =
∑
n=0

D(n; 1, 2, 5)qn

i+ 2j + 5k = n; n = 0 . . . 20
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1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1





1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11



=



1
1
2
2
3
4
5
6
7
8
10
11
13
14
16
18
20
22
24
26
29


D(n;1,2,5,10)∑

i=0

qi
∑
j=0

(q2)j
∑
k=0

(q5)k
∑
l=0

(q10)l =
∑
n=0

D(n; 1, 2, 5, 10)qn

i+ 2j + 5k + 10l = n; n = 0 . . . 20

19





1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1





1
1
2
2
3
4
5
6
7
8
10
11
13
14
16
18
20
22
24
26
29



=



1
1
2
2
3
4
5
6
7
8
11
12
15
16
19
22
25
28
31
34
40
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n D(n; 1, 2) D(n; 1, 2, 5) D(n; 1, 2, 5, 10)
0 1 1 1
1 1 1 1
2 2 2 2
3 2 2 2
4 3 3 3
5 3 4 4
6 4 5 5
7 4 6 6
8 5 7 7
9 5 8 8
10 6 10 11
11 6 11 12
12 7 13 15
13 7 14 16
14 8 16 19
15 8 18 22
16 9 20 25
17 9 22 28
18 10 24 31
19 10 26 34
20 11 29 40

n=20∑
n=0

D(n; 1, 2, 5, 10) = 292

100 =

5,10,25,50︷ ︸︸ ︷
(n · 5) + (100− n · 5)︸ ︷︷ ︸

1

I. 3. In how many ways can you put the necessary stamps in one row on
a letter using 2, 4, 6, 8 cent stamps? The postage is 10 cents. Different ar-
rangements of the same value are regarded as different ways.

I. 4. We call Bn the number of all possible sums with value n (n positive
integer) whose terms are 1, 2, 3 or 4. (Two sums consisting of the same terms
but in different order are regarded as different.) Then the series

1 +B1ζ +B2ζ
2 + . . .+Bnζ

n + . . .
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represents a rational function of ζ.Which one?

Proof: Problems 3 and 4 solved together.
First, consider the stamp problem .

10 = 2 + 4 + 4 = 4 + 4 + 2 = 4 + 2 + 4 = 6 + 2 + 2 = 8 + 2

are all examples of partitions of number 10 with the restriction that the
parts are specified {2, 4, 6, 8} and different arrangements of the same value
are regarded as different ways. How many different partitions are there?

Second, the number of possible sums with value n and with the given
restrictions is a generalization of the stamp problem. For the first part we
have four choices

ζ1 + ζ2 + ζ3 + ζ4

by the Rule of Sums . For two parts

(ζ1 + ζ2 + ζ3 + ζ4)2 = ζ2 + 2ζ3 + 3ζ4 + 4ζ5 + 3ζ6 + 2ζ7 + ζ8

For s parts the generator is

(ζ1 + ζ2 + ζ3 + ζ4)s.

Therefore summation for 1, 2, . . . s . . . gives

1 +
n=∞∑
n=1

Bn = 1 + (ζ1 + ζ2 + ζ3 + ζ4) + (ζ1 + ζ2 + ζ3 + ζ4)2+

. . .+ +(ζ1 + ζ2 + ζ3 + ζ4)s + . . . =
1

1− (ζ1 + ζ2 + ζ3 + ζ4)
.

The required number is B5 = 15.

Numerical Calculation: First we show that the recursion

Bn = Bn−1 +Bn−2 +Bn−3 +Bn−4

follows from the definition. The set of possible sums with value n can be
divided into four disjoint subsets. The number of possible sums with value
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n and with the restrictions that the last term is k equals Bn−k, k = 1, 2, 3, 4.
Every sum with value n belongs to exactly one of the above subsets.

(ζ1 + ζ2 + ζ3 + ζ4)1 = ζ1 + ζ2 + ζ3 + ζ4

(ζ1 + ζ2 + ζ3 + ζ4)2 = ζ2 + 2ζ3 + 3ζ4 + 4ζ5 + 3ζ6 + . . .

(ζ1 + ζ2 + ζ3 + ζ4)3 = ζ3 + 3ζ4 + 6ζ5 + 10ζ6 + . . .

(ζ1 + ζ2 + ζ3 + ζ4)4 = ζ4 + . . .

B1 = 1; B2 = 2; B3 = 4; B4 = 8; B5 = 15.

I. 5. Someone owns a set of eight weights of {1, 1, 2, 5, 10, 10, 20, 50} grams,
respectively. In how many different ways can 78 grams be composed of such
weights? (Replacing one weight by another of the same value counts as dif-
ferent way.)

I. 6. In how many different ways can one weigh 78 grams if the weighs
may be placed in both pans of the scales and the same weights are used as in
problem 5 ?

I. 7. We consider the sum of the form

ε1 + ε2 + 2ε3 + 5ε4 + 10ε5 + 10ε6 + 20ε7 + 50ε8

where ε1, ε2, ε3, . . . ε8 assume the values of 0 or 1. We call Cn the number of
different sums with value n. Write the polynomial

C0 + C1ζ + C2ζ
2 + . . .+ C99ζ

99

as a product.

I. 8. Let ε1, ε2, ε3, . . . ε8 assume the values of −1,0,1. Modify problem 7
accordingly. Let Dn denote the number of different sums of value n. Find
the factorization of the following expression (function of ζ)

n=99∑
n=−99

Dnζ
n.
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Solutions: Problems 5,6,7,8 form a proportion : 5 is to 7 as 6 is to 8 .
First weighing problem 5,7 , all weighs in one pan

n=99∑
n=0

Cnζ
n = (1 + ζ)2(1 + ζ2)(1 + ζ5)(1 + ζ10)2(1 + ζ20)(1 + ζ50).

Second weighing problem 6,8 , weights may be placed on both pans

n=99∑
n=−99

Dnζ
n = (ζ−1 + 1 + ζ)2(ζ−2 + 1 + ζ2)(ζ−5 + 1 + ζ5)×

(ζ−10 + 1 + ζ10)2(ζ−201 + ζ20)(ζ−501 + ζ50).

The required numbers are

C78 = 4, D78 = 20.

The calculations of An, Bn, Cn, Dn can be carried out easily on programable
calculators.

I. 9. These protoype problems can be generalized as follows:

Solutions: Change problem

a1x1 + a2x2 + . . .+ alxl = n,

Λ(ζ) =
1

(1− ζa1)
1

(1− ζa2)
. . .

1

(1− ζal)
=

n=∞∑
n=0

Anζ
n.

Stamp problem

Λ(ζ) =
1

1− (ζa1 + ζa2 + . . .+ ζal)
=

n=∞∑
n=0

Bnζ
n.

First weighing problem , all weights in one pan

Λ(ζ) = (1 + ζa1)(1 + ζa2)(. . .)(1 + ζal) =
n=∞∑
n=0

Cnζ
n.

Second weighing problem , weights may be placed on both pans

Λ(ζ) = (ζ−a1 + 1 + ζa1)(ζ−a2 + 1 + ζa2)(. . .)(ζ−al + 1 + ζal) =
n=∞∑
n=0

Dnζ
n
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Closing Remarks i) Partitions of number n can be demonstrated by Fer-
rers graphs . For example 10 = 4 + 4 + 2 in the stamp problem becomes

• • ••

• • ••

• •

or, if read vertically, 10 = 3 + 3 + 2 + 2.
ii) On programable calculators the coefficients An, Bn, Cn, Dn are calculated
by a simple subroutine that multiplies a polynomial by another polynomial.

p(x) = a0x
0 + a1x

1 + a2x
2 + . . .+ an−1x

n−1 + anx
n

q(x) = b0x
0 + b1x

1 + b2x
2 + . . .+ bm−1x

m−1 + bmx
m

r(x) = r0x
0 + r1x

1 + r2x
2 + . . .+ rm+n−1x

m+n−1 + rm+nx
m+n

p(x)q(x) = r(x)

A(i) = (a0, a1, a2, . . . , an−1, an)

B(j) = (b0, b1, b2, . . . , bm−1, bm)

C(k) = (c0, c1, c2, . . . , cm+n−1, cm+n)

Input

A,B, n,m

Algorithm

C ← 0

for i = 0, 1, 2, 3, . . . n do
for j = 0, 1, 2, 3, . . .m do

k = i+ j

C(k) = C(k) + A(i) ∗B(j)

end for (j)
end for (i)
Output

C

25



6.4 Assignment 2.

Summary

• Combinatorial Analysis

• Pólya - Szegő: Aufgaben und Lehrsätze aus der Analysis,

• Last revision January 2, 2015

Problems

I.10. An assembly of p persons elects a committee consisting of n of its
members. How many different committees can they choose?

Solution:(
p
n

)
=
p(p− 1)(p− 2) . . . (p− n+ 1)

n!
=

p!

(p− n)!n!
.

It is also possible to interpret this problem by means of generators : Given
a person say Melvin ; he is either selected ξ1 or not selected ξ0, a simple
alternative. Therefore the generator for Melvin is (1+ξ).There are p persons,
p independent alternatives,

(1 + ξ)p = 1 +

(
p
1

)
ξ1 +

(
p
2

)
ξ2 . . .+

(
p
n

)
ξn . . .+ ξp.

The is the binomial theorem , of course, and the coefficients,in this order,
give the number of ways to select 1, 2, 3, . . . , n, . . . p persons out of p persons.

I 11. There are p persons sharing n dollars. In how many ways can they
distribute the money?

Solution: One person, say Melvin can get 0, 1, 2, . . . , r, . . . dollars. The
generator for Melvin is

(1 + ξ1 + ξ2 + . . .+ ξr + . . .) =
1

1− ξ
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after formal summation. There are p persons, therefore the generator is

(1 + ξ1 + ξ2 + . . .+ ξr + . . .)p =
1

(1− ξ)p
= (1− ξ)−p.

By Lemma 1.

(1− ξ)−p =
∞∑
0

(
p+ r − 1
p− 1

)
ξr

therefore the required number is r = n(
p+ n− 1
p− 1

)
.

I 12. There are p persons sharing n dollars, each getting at least one dollar.
In how many different ways can they do it?

Solution: Again, using Melvin as an example, he can get 1, 2, . . . , r, . . .
dollars. So the generator for Melvin is

(ξ1 + ξ2 + . . .+ ξr + . . .) =
ξ

1− ξ

after formal summation. The generator for p persons is

(ξ1 + ξ2 + . . .+ ξr + . . .)p =
1

(1− ξ)p
= ξp(1− ξ)−p

By Lemma 1. Then by Lemma 2.

(ξ1 + ξ2 + . . .+ ξr + . . .)p =
∞∑
r=p

(
r − 1
p− 1

)
ξr.

Therefore the required number is r = n(
n− 1
p− 1

)
.

I 13. Consider the general homogeneous polynomial of degree n in p vari-
ables x1, x2, . . . xp. How many terms does it have?

27



Discussion: Let

Si = 1 + xi + x2i + x3i + . . . , i = 1, 2, . . . p

be infinite (formal) sums. Write

G(x1, x2, . . . xp) = Πi=p
i=1Si = Πi=p

i=1(1 + xi + x2i + x3i + . . .)

for the product of these sums. Termwise multiplication takes one and only
one element from each sum Si; x

k1
1 from S1; x

k2
2 from S2; and so on. The

typical term xk11 x
k2
2 . . . xkpp has a combined degree of k1 + k2 + . . .+ kp. Col-

lect the terms that have the same combined degree r, into a homogeneous
polynomial of degree r in p variables x1, x2, . . . xp, call it fr

fr(x1, x2, . . . xp) =
∑

k1+k2...+kp=r

xk11 x
k2
2 . . . xkpp ; 0 ≤ ki; i = 1, 2, . . . p,

in fr each term is multiplied by coefficient 1. Note further that fr has as
many terms as the general homogeneous polynomial of degree n in p variables.
Next, sum fr over r = 0, 1, 2, . . .

G(x1, x2, . . . xp) =
r=∞∑
r=0

fr =
r=∞∑
r=0

xk11 x
k2
2 . . . xkpp

where

k1 + k2 + . . .+ kp = r; 0 ≤ ki; i = 1, 2, . . . p

in the last sum. Thus

G(x1, x2, . . . xp) = Πi=p
i=1(1 + xi + x2i + x3i + . . .) =

r=∞∑
r=0

xk11 x
k2
2 . . . xkpp .

Substitution

x1 = x2 = . . . = xp = ξ

gives

G(ξ, ξ, . . . , ξ) = (1 + ξ + ξ2 + ξ3 + . . .)p =
∞∑
r=p

(
p+ r − 1
p− 1

)
ξr.

Thus the generator for this problem is identical to the one in I 11 .
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Solution: The general homogeneous polynomial of degree n in p variables
x1, x2, . . . xp has(

p+ n− 1
p− 1

)

terms.

Example:

p = 3

Si = 1 + xi + x2i + x3i + . . . , i = 1, 2, 3

G(x1, x2, x3) =
r=∞∑
r=0

xk11 x
k2
2 x

k3
3 =

1 + (x1 + x2 + x3)1 + (x1x1 + x1x2 + x1x3 + x2x2 + x2x3 + x3x3)2

(x31 + x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x1x2x3 + x32 + x22x3 + x2x

2
3 + x33)3 + . . .

|(. . .)0| = 1 =

(
3 + 0− 1

3− 1

)
=

(
2
2

)
√

|(. . .)1| = 3 =

(
3 + 1− 1

3− 1

)
=

(
3
2

)
√

|(. . .)2| = 6 =

(
3 + 2− 1

3− 1

)
=

(
4
2

)
√

|(. . .)3| = 10 =

(
3 + 3− 1

3− 1

)
=

(
5
2

)
√

etc.
See also Lemma 3 : eight objects partitioned into six cells

•| • •|| • • • || • •

x1|x2x2||x4x4x4||x6x6 = x1x
2
2x

3
4x

2
6.

29



I 14. Any positive integer admits a unique representation in the binary
system (1, 2, 4, 8, 16, . . .).

Discussion This is a well-known result from computer science and number
theory. Let us express the first 7 positive integers

1 = 1; 2 = 2; 3 = 2 + 1; 4 = 4; 5 = 4 + 1; 6 = 4 + 2; 7 = 4 + 2 + 1

by the first 3 numbers of the binary system {1, 2, 4}. Working with generators
(1 + ξ1),(1 + ξ2), and (1 + ξ4) as we did in solving the protoype problems, we
can compose these integers and zero

(1 + ξ1)(1 + ξ2)(1 + ξ4) = ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7

in a unique way. Take another step:

(1 + ξ1)(1 + ξ2)(1 + ξ4)(1 + ξ8) =

(1 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7)(1 + ξ8) =

ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 +

ξ0+8 + ξ1+8 + ξ2+8 + ξ3+8 + ξ4+8 + ξ5+8 + ξ6+8 + ξ7+8 =

(ξ0 + . . .+ ξ7) + (ξ8 + . . .+ ξ15) =
i=15∑
i=0

ξi.

This is a (formal) power series where the indeterminate has exponents {0, 1, 2, . . . 15}
and uniform coefficients 1. Thus the first four generators yield zero and the
positive integers that are less than 16 = 24. Observe how multiplication by
(1 + ξ8) preserves and shifts the power series to higher exponents.

Next, we state our induction hypothesis :

Πi=n
i=0 (1 + ξ2

i

) =
i=2n+1−1∑

i=0

ξi

for any positive integer n. This statement is true for n = 2, 3. The general
case follows by induction on n.

Solution: For any positive integer n > 2 the integers {0, 1, 2, . . . (2n+1−1)}
can be represented in the binary system (1, 2, 4, 8, 16, . . . , 2n) in Ai different
ways

Πi=n
i=0 (1 + ξ2

i

) =
i=2n+1−1∑

i=0

Aiξ
i.
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Since

Ai = 1,∀i,

there is a unique representation for each positive integer.

Solution:

(1 + ξ)(1 + ξ2)(1 + ξ4)(1 + ξ8) . . . =
(1− ξ2)
(1− ξ)

(1− ξ4)
(1− ξ2)

(1− ξ8)
(1− ξ4)

(1− ξ16)
(1− ξ8)

. . .

1

1− ξ
= ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + . . .

using

(1 + ξ2k) = (1− ξk)(1 + ξk)

and formal summation. See also prototype weighing problems.

I 15. Any positive integer admits a unique representation in the ternary
system with + or − signs, (±1,±3,±9,±27,±81, . . .).

Solution: Again, see prototype weighing problems: using both pans of the
scale. Quasipolynomials and summation of (short) geometric series :

(ξ−1 + 1 + ξ1) = ξ−1(1 + ξ1 + ξ2) = ξ−1
ξ3 − 1

ξ − 1

(ξ−3 + 1 + ξ3) = ξ−3(1 + ξ3 + ξ6) = ξ−3
ξ9 − 1

ξ3 − 1
. . .

(ξ−3
n

+ 1 + ξ3
n

) = ξ−3
n

(1 + ξ3
n

+ ξ2∗3
n

) = ξ−3n
ξ3

n+1 − 1

ξ3n − 1

The generator is the product of the quasipolynomials

Πn(ξ−3
n

+ 1 + ξ3
n

) = ξ−1
ξ3 − 1

ξ − 1
ξ−3

ξ9 − 1

ξ3 − 1
. . . ξ−3

n ξ3
n+1 − 1

ξ3n − 1
=

(ξ−1ξ−3 . . . ξ−3
n

)

(
ξ3 − 1

ξ − 1

)(
ξ9 − 1

ξ3 − 1

)
. . .

(
ξ3

n+1 − 1

ξ − 1

)
=
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(ξ−1ξ−3 . . . ξ−3
n

)

(
ξ3

n+1 − 1

ξ3n − 1

)
= ξ−(1+3+...+3n)

(
ξ3

n+1 − 1

ξ − 1

)
.

(1 + 3 + . . .+ 3n) =
3n+1 − 1

3− 1
=

3n+1 − 1

2
= N

(
ξ3

n+1 − 1

ξ − 1

)
=

(
ξ2N+1 − 1

ξ − 1

)
= 1 + ξ + ξ2 + . . .+ ξ2N

Πn(ξ−3
n

+ 1 + ξ3
n

) = ξ−N(1 + ξ + ξ2 + . . .+ ξ2N) = ξ−N + ξ−N+1 + . . .+ ξN−1 + ξN .

The generators produce a quasipolynomial with uniform coefficients equal to
1. Thus the number of ways an integer {−N,−N+1, . . . N−1, N} can be rep-
resented in the signed ternary sytem is egual to {A−N , A−N+1, . . . , AN−1, AN},
respectively.

Πi=n
i=0 (ξ−3

n

+ 1 + ξ3
n

) = A−Nξ
−N + A−N+1ξ

−N+1 + . . .+ AN−1ξ
N−1 + ANξ

N ;

N =
3n+1 − 1

2
.

All A-s are equal to 1.

Example:

{±1,±3,±9}; n = 2; N =
ξ3

2+1 − 1

2
= 13.

(ξ−1 + 1 + ξ1) = ξ−1
ξ3 − 1

ξ − 1

(ξ−3 + 1 + ξ3) = ξ−3
ξ9 − 1

ξ3 − 1

(ξ−3
2

+ 1 + ξ3
2

) = ξ−3
2 ξ3

2+1 − 1

ξ32 − 1

(ξ−1 + 1 + ξ1)(ξ−3 + 1 + ξ3)(ξ−3
2

+ 1 + ξ3
2

) = ξ−1
ξ3 − 1

ξ − 1
ξ−3

ξ9 − 1

ξ3 − 1
ξ−3

2 ξ3
2+1 − 1

ξ32 − 1
=
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(ξ−13)
ξ27 − 1

ξ − 1
= (ξ−13)(ξ26 + ξ25 + . . .+ ξ1 + 1) =

(ξ−13 + ξ−12 + . . .+ ξ0 + . . .+ ξ11 + ξ12 + ξ13).

-13 = -9-3-1 13 = 9+3+1
-12 = -9-3 12 = 9+3
-11 = -9-3+1 11 = 9+3-1
-10 = -9-1 10 = 9+1
-9 = -9 9 = 9
-8 = -9+1 8 = 9-1
-7 = -9+3-1 7 = 9-3+1
-6 = -9+3 6 = 9-3
-5 = -9+3+1 5 = 9-3-1
-4 = -3-1 4 = 3+1
-3 = -3 3 = 3
-2 = -3+1 2 = 3-1
-1 = -1 1 = 1

I 16. Write

(1 + qζ)(1 + qζ2)(1 + qζ4)(1 + qζ8)(1 + qζ16) . . . = a0 + a1ζ + a2ζ
2 + a3ζ

3 + . . . .

Find the general formula for an.

Solution: Recall I 14.

S0 = (1 + ξ)(1 + ξ2)(1 + ξ4)(1 + ξ8) . . . = ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + . . .

Then

S1 = (1 + qζ)(1 + qζ2)(1 + qζ4)(1 + qζ8) . . . =

1 + qζ + qζ2 + q2ζ3 + qζ4 + q2ζ5 + q2ζ6 + q3ζ7 + qζ8 . . .

and after replacing q by q1, q2, q4 . . ., respectively

S2 = (1 + q1ζ
1)(1 + q2ζ

2)(1 + q4ζ
4)(1 + q8ζ

8) . . . =

1 + q1ζ + q2ζ
2 + q1q2ζ

3 + q4ζ
4 + q1q4ζ

5 + q2q4ζ
6 + q1q2q4ζ

7 + q8ζ
8 . . .
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Compare this to the unique binary representation of numbers {1, 2, 3, 4, 5, 6, 7, 8}

1 ≡ 1; 2 ≡ 10; 3 ≡ 11; 4 ≡ 100;

5 ≡ 101; 6 ≡ 110; 7 ≡ 111; 8 ≡ 1000.

Thus series S0 proves that each positive integer has a unique representation
in the binary system, series S1 shows how many 1-s each representation has,
and S2 details which powers of 2 are included in the composition. Therefore

an = qF (n)

where F (n) is the number of digits 1 in the unique binary representation of
positiv integer n.

I 17. Consider the expansion

(1− a)(1− b)(1− c)(1− d) . . . = 1− a− b+ ab− c+ ac+ bc− abc− d+ . . .

What is the sign of the n− th term?

Solution: Deception! Consider S2:

S2 = (1 + q1ζ
1)(1 + q2ζ

2)(1 + q4ζ
4)(1 + q8ζ

8) . . . =

1 + q1ζ + q2ζ
2 + q1q2ζ

3 + q4ζ
4 + q1q4ζ

5 + q2q4ζ
6 + q1q2q4ζ

7 + q8ζ
8 . . .

First replace the linearly ordered finite set {a, b, c, d . . . z} by the linearly
ordered set {q1ζ1, q2ζ2, q4ζ4 . . . q2kζ2

k}

S3 = (1− q1ζ1)(1− q2ζ2)(1− q4ζ4)(1− q8ζ8) . . . =

1− q1ζ − q2ζ2 + q1q2ζ
3 − q4ζ4 + q1q4ζ

5 + q2q4ζ
6 − q1q2q4ζ7 + q8ζ

8 . . .

Notice the patterns of +s and −s are the same. Next, make

q = q1 = q2 = q4 = . . .

which reduces

(1− a)(1− b)(1− c)(1− d) . . . = 1− a− b+ ab− c+ ac+ bc− abc− d+ . . . =
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to

1− qζ1 − qζ2 + q2ζ3 − qζ4 + q2ζ5 + q2ζ6 − q3ζ7 − qζ8 . . .

the two series have the same pattern of siqns. Finally, set

ζ = 1

1− qζ1 − qζ2 + q2ζ3 − qζ4 + q2ζ5 + q2ζ6 − q3ζ7 − qζ8 . . .

and the sign of the n-th term is (−1)F (n).
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6.5 Assignment 3.

• Combinatorial Analysis

• Pólya - Szegő: Aufgaben und Lehrsätze aus der Analysis,

• Last revision January 2, 2015

Problems

I.18. Prove the identity

(1 + ξ + ξ2 + . . .+ ξ9) ×
(1 + ξ10 + ξ20 + . . .+ ξ90) ×

(1 + ξ100 + ξ200 + . . .+ ξ900 ×

. . . =
1

1− ξ

Solution Repeated application of summation formula of finite geometric
series

1 + ξ + ξ2 + . . .+ ξn−1 =
ξn − 1

ξ − 1

because

(1 + ξ + ξ2 + . . .+ ξn−1)(ξ − 1) = ξn − 1

1 + ξ + ξ2 + . . .+ ξ9 =
ξ10 − 1

ξ − 1

1 + ξ10 + ξ20 + . . .+ ξ90 =
ξ100 − 1

ξ10 − 1

1 + ξ100 + ξ200 + . . .+ ξ900 =
ξ1000 − 1

ξ100 − 1

ξ10 − 1

ξ − 1
× ξ100 − 1

ξ10 − 1
× ξ1000 − 1

ξ100 − 1
. . . =

−1

ξ − 1
=

1

1− ξ
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I.18.2 In a legistlative assembly there are 2n + 1 seats and three parties.
In how many different ways can the seats be distributed among the parties so
that no party attains a majority against the coalition of the other two?

Solution Obviously, majority is n+1 seats, therefore the restriction means
that the truncated series

1 + ξ + ξ2 + . . .+ ξn

is the generator for a party. Since there are three parties the generator
for combinations with limited repetitions of objects (seats) of 3 kinds with
restriction that each kind may appear no more than n times is:

(1 + ξ + ξ2 + . . .+ ξn)3 =
∑
k=0

Ekξ
k.

The number of ways is E2n+1. Our plan is to proceed from combinations with
unlimited repetitions to combinations with limited repetitions. Two facts are
required :

i) The generator for combinations with unlimited repetitions of objects of
p kinds and no restriction on the number of times each kind appears is:

(1 + ξ + ξ2 + . . .+ ξn + . . .)p = (1− ξ)−p

=
∞∑
k=0

(
p+ k − 1

k

)
ξk

=
∞∑
k=0

(
p+ k − 1
p− 1

)
ξk

For proof see Lemma 1.

ii)

(1 + ξ + ξ2 + . . .+ ξn)2 = 1 + 2ξ + 3ξ2 + . . .+ (n+ 1)ξn + . . .

Next, set p = 3 and write

A = (1 + ξ + ξ2 + . . .+ ξn), B = (ξn+1 + . . .).

(A+B)3 = A3 + 3A2B + AB2 +B3
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(A+B)3 = . . .+

(
2n+ 3

2

)
ξ2n+1 + . . .

by i) . Further,

A3 = . . .+ a2n+1ξ
2n+1 + . . .

3A2B = 3(1 + ξ + ξ2 + . . .+ ξn)2(ξn+1 + . . .)

= 3(1 + 2ξ + 3ξ2 + . . .+ (n+ 1)ξn + . . .)(ξn+1 + ξn+2 + . . .)

= . . .+ 3(1 + 2 + 3 + . . .+ (n+ 1))ξ2n+1 + . . .

= . . . b2n+1ξ
2n+1 + . . .(

2n+ 3
2

)
ξ2n+1 = (a2n+1 + b2n+1)ξ

2n+1

because (AB2 +B3) does not contribute to the coefficient of ξ2n+1.

b2n+1 = 3(1 + 2 + 3 + . . .+ (n+ 1)) = 3
(n+ 2)(n+ 1)

2
= 3

(
n+ 2

2

)

a2n+1 =

(
2n+ 3

2

)
− 3

(
n+ 2

2

)

=
(2n+ 3)(2n+ 12)

2
− (n+ 2)(n+ 1)

2

=
(n+ 1)[2(2n+ 3)− 3(n+ 2)]

2

=
(n+ 1)n

2

=
(n+ 1)n

2

=

(
n+ 1

2

)
.

I.19.

(1 + ξ1)(1 + ξ2)(1 + ξ3)(1 + ξ4) . . . =
1

(1− ξ)(1− ξ3)(1− ξ5)(1− ξ7) . . .
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Solution Write∏
n=1

(1 + ξn) =
∏
n=1

(1− ξ2n−1)−1.

{1, 2, 3, . . . n . . .} = ∪n=1{(2n− 1), 2 ∗ (2n− 1), 22 ∗ (2n− 1), 23 ∗ (2n− 1), . . .}

This is a decomposition of positive integers into disjoint sets.Let us list some
of the disjoint sets in question:

S2 = {1, 2, 4, 8, 16, 32, . . .}

S3 = {3, 6, 12, 24, 48, . . .}

S5 = {5, 10, 20, 40, 80, . . .}

S7 = {7, 14, 28, 56, 112, . . .}

S9 = {9, 18, 36, 72, 144, . . .}

S11 = {11, 22, 44, 88, . . .}

Note that the first set contains the powers of 2. The second, and subsequent
sets are multiples of odd numbers.Every positive integer P belongs to exactly
one set. Write

P = 2apbqc . . . ; p, q, . . . primes.

If a = 0 then

P = pbqc . . . = 2n− 1, for some n

∃ : {P, 2 ∗ P, 22 ∗ P, 23 ∗ P, . . .}.

If a > 0 then

pbqc . . . = 2m− 1, for some m; P = 2a(2m− 1)

∃ : {(2m− 1), . . . , 2a(2m− 1), . . .}.

Multiplication takes place set by set.

S2 : (1 + ξ1)(1 + ξ2)(1 + ξ4)(1 + ξ8) . . . = (1− ξ1)−1
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because [cf.I.14.]

(1 + ξ1) =
(1− ξ2)
(1− ξ)

(1 + ξ2) =
(1− ξ4)
(1− ξ2)

(1 + ξ4) =
(1− ξ8)
(1− ξ4)

(1 + ξ8) =
(1− ξ16)
(1− ξ8)

...

(1 + ξ1)(1 + ξ2)(1 + ξ4)(1 + ξ8) . . .

=
(1− ξ2)
(1− ξ)

(1− ξ4)
(1− ξ2)

(1− ξ8)
(1− ξ4)

(1− ξ16)
(1− ξ8)

Upon cancelling (1− ξ2),(1− ξ4), etc. and using |ξ| < 1

(1 + ξ1)(1 + ξ2)(1 + ξ4)(1 + ξ8) . . . =
1

(1− ξ)

This method works with α = 3, 5, . . . (2n− 1), . . . as well.

Sα : (1 + ξα)(1 + ξ2α)(1 + ξ4α)(1 + ξ8α) . . . = (1− ξα)−1

(1 + ξ1α) =
(1− ξ2α)

(1− ξα)

(1 + ξ2α) =
(1− ξ4α)

(1− ξ2α)

(1 + ξ4α) =
(1− ξ8α)

(1− ξ4α)

(1 + ξ8α) =
(1− ξ16α)

(1− ξ8α)
...

(1 + ξ1α)(1 + ξ2α)(1 + ξ4α)(1 + ξ8α) . . .
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=
(1− ξ2α)

(1− ξ)
(1− ξ4α)

(1− ξ2α)

(1− ξ8α)

(1− ξ4α)

(1− ξ16α)

(1− ξ8α)
. . .

etc.

(1 + ξ1α)(1 + ξ2α)(1 + ξ4α)(1 + ξ8α) . . . = (1− ξα)−1

as claimed. Then the final result comes after multiplying the contributions
of S2, Sα, α = 3, 5, 7, 9, . . .

(1− ξ1)−1(1− ξ3)−1(1− ξ5)−1 . . . (1− ξα)−1 . . . =
∏
n=1

(1− ξ2n−1)−1.

I.20 Each positive integer can be decomposed into a sum of different positive
integers in as many ways as it can be decomposed into a sum of equal or
different odd positive integers.

Solution Consider the decompositions of 6 into sums with different terms

6 = 1 + 5 = 2 + 4 = 1 + 2 + 3,

and with odd terms

1 + 5 = 3 + 3 = 1 + 1 + 1 + 3 = 1 + 1 + 1 + 1 + 1 + 1.

The generator for decomposing a number into different (unequal) terms is

(1 + ξ)(1 + ξ2)(1 + ξ3) + . . .) = 1 +
∑
k=0

Ekξ
k

The coefficient En is equal to the number of ways how a combination (selec-
tion) of different (unequal) numbers

{1, 2, 3, . . .}

can add up to n. Each number can be used no more than once, order is
unimportant. As shown in I.19.:

(1 + ξ1)(1 + ξ2)(1 + ξ3)(1 + ξ4) . . . =
1

(1− ξ)(1− ξ3)(1− ξ5)(1− ξ7) . . .
The generator for decomposing a number into odd numbers is

(1 + ξ + ξ2 + ξ3 . . .) multiples of 1

× (1 + ξ3 + ξ6 + ξ9 . . .) multiples of 3 . . .

× (1 + ξα + ξ2α + ξ3α . . .) multiples of α
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where α > 3 runs through the odd numbers. Summing the series one by one

(1 + ξ + ξ2 + ξ3 . . .) = (1− ξ)−1

(1 + ξ3 + ξ6 + ξ9 . . .) = (1− ξ3)−1

(1 + ξα + ξ2α + ξ3α . . .) = (1− ξα)−1

and collecting the results

(1− ξ)−1(1− ξ3)−1 . . . (1− ξα)−1 . . . =
1

(1− ξ)(1− ξ3)(1− ξ5)(1− ξ7) . . .

completes the proof.

I.21 It is possible to write the positive integer n in 2n−1− 1 ways as a sum
of smaller integers. Two sums are that differ in the order of terms only are
now regarded as different.

Solution 1.: Suppose there are n balls in a row:

• • • . . . • •

Then there are n − 1 options to insert one separator into any of the n − 1
gaps, for example

• • | • . . . • •

which models the partition 2 + (n− 2) = n. There are (n− 1)(n− 2) options
to insert two separators, for example

•| • •| . . . • •

which is associated with 1 + 2 + (n− 3) = n. Any gap between two balls can
have no more than one separator. Oviously,

•| • | • | . . . | • |•

is associated with 1 + 1 + 1 + . . .+ 1 = n.(
n− 1

1

)
+

(
n− 1

2

)
+ . . .+

(
n− 1
n− 1

)
= 2n−1 − 1.
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Solution 1.: ”Stamp” problem with minor changes. Let Bn be the number
of all possible sums with value n whose terms are 1, 2, 3, . . . , n (Conditions
are relaxed to include n.) The generators for sums with one, two, etc. k
terms are

(ξ + ξ2 + . . .+ ξn), (ξ + ξ2 + . . .+ ξn)2, . . . (ξ + ξ2 + . . .+ ξn)k, . . . ,

respectively.
Next, we sum the generators and expand the result

1 +
∞∑
k=1

(ξ + ξ2 + . . .+ ξn)k = 1 +
∞∑
k=1

B′kξ
k

The number of all possible sums with value n

1 +
∞∑
k=1

(ξ + ξ2 + . . .+ ξn + . . .)k

I 22. The total number of non-negative integral solutions of the following
Diophantine equations is n+ 1:

x+ 2y = n; 2x+ 3y = n− 1; 3x+ 4y = n− 2; . . .

. . . nx+ (n+ 1)y = 1; (n+ 1)x+ (n+ 2)y = 0.

Solution :
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6.6 Assignment 4.

• Combinatorial Analysis

• Hua, Riordan

• Last revision January 2, 2015

Notes on partition Let q be real or complex, |q| < 1 and let us define the
following functions

q0 =
∞∏
n=1

(1− q2n)

q1 =
∞∏
n=1

(1 + q2n)

q2 =
∞∏
n=1

(1 + q2n−1)

q3 =
∞∏
n=1

(1− q2n−1).

Recall that the infinite product

(1 + u1)(1 + u2)(1 + u3) . . . =
∞∏
k=1

(1 + uk)

converges to P 6= 0 if limPn = P where

Pn = (1 + u1)(1 + u2)(1 + u3) . . . (1 + un), uk 6= −1,∀k.

A necessary and sufficient condition condition that
∏

(1 + uk) converge ab-
solutely is that

∑
uk converge absolutely.

Proposition 1. If |q| < 1, then

q1q2q3 = 1.
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Proof (1): Consider index sets {n}, {2n− 1}, {2n}:

{2n} ∪ {2n− 1} = {n}, {2n} ∩ {2n− 1} = {∅}

q0q3 =
∞∏
n=1

(1− q2n)
∞∏
n=1

(1− q2n−1) =
∞∏
n=1

(1− qn).

q1q2 =
∞∏
n=1

(1 + q2n)
∞∏
n=1

(1 + q2n−1) =
∞∏
n=1

(1 + qn)

q0q1q2q3 =
∞∏
n=1

(1− qn)
∞∏
n=1

(1 + qn) =
∞∏
n=1

(1− q2n) = q0

q1q2q3 = 1.

Proof (2):

q2q3 =

( ∞∏
n=1

(1 + q2n−1)

)( ∞∏
n=1

(1− q2n−1)
)

=
∞∏
n=1

(
(1 + q2n−1)(1− q2n−1)

)
=

∞∏
n=1

(1− q2(2n−1))

q1 =
∞∏
n=1

(1 + q2n)

=
∞∏
n=1

(1 + q2(2n−1))
∞∏
n=1

(1 + q4(2n−1))
∞∏
n=1

(1 + q8(2n−1)) . . .

because

{2n} = {2(2n− 1)} ∪ {4(2n− 1)} ∪ {8(2n− 1)} . . .

To verify this decomposition let M be an even number, Mε{2n}. Then

M = 2αpβ11 p
β2
2 . . . pβkk
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where α > 0 and pi, i = 1, . . . k are odd primes. This representation is
unique. Thus M belongs to one and only one subset, {2α(2n − 1)} and
pβ11 p

β2
2 . . . pβkk = 2m − 1 for some integer m. On the other hand, there is no

odd number in any of the {2α(2n−1)} subsets. Therefore the decomposition
is valid. Here is a numerical example of ”taking out the powers of 2” from
even numbers up to 40:

{2n} = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . . 40, . . .}

{2(2n− 1)} = {2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, . . .}

{4(2n− 1)} = {4, 12, 20, 28, 36, 44, . . .}

{8(2n− 1)} = {8, 24, 40, 48, . . .}

{16(2n− 1)} = {16, 48, . . .}

{32(2n− 1)} = {32, 96, . . .}

{64(2n− 1)} = {64, . . .}

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . . 40} =

{2, 6, 10, 14, 18, 22, 26, 30, 34, 38} ∪ {4, 12, 20, 28, 36} ∪ {8, 24, 40} ∪ {16} ∪ {32}.

End of numerical example.

q1q2q3 =
∞∏
n=1

(1− q2(2n−1))
∞∏
n=1

(1 + q2(2n−1))
∞∏
n=1

(1 + q4(2n−1))
∞∏
n=1

(1 + q8(2n−1)) . . .

=

( ∞∏
n=1

(1− q2(2n−1))
∞∏
n=1

(1 + q2(2n−1))

) ∞∏
n=1

(1 + q4(2n−1)) . . .

=

( ∞∏
n=1

(1− q4(2n−1))
∞∏
n=1

(1 + q4(2n−1))

) ∞∏
n=1

(1 + q8(2n−1)) . . .

=

( ∞∏
n=1

(1− q8(2n−1))
∞∏
n=1

(1 + q8(2n−1))

) ∞∏
n=1

(1 + q16(2n−1)) . . . = 1.

The lowest exponent of q is rising yet the infinite products have the same
limit.Why? Write

K(q) =
∞∏
n=1

(1− q2(2n−1))
∞∏
n=1

(1 + q2(2n−1))
∞∏
n=1

(1 + q4(2n−1))
∞∏
n=1

(1 + q8(2n−1)) . . .
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K(q2) =
∞∏
n=1

(1− q4(2n−1))
∞∏
n=1

(1 + q4(2n−1)
∞∏
n=1

(1 + q8(2n−1)) . . .

K(q4) =
∞∏
n=1

(1− q8(2n−1))
∞∏
n=1

(1 + q8(2n−1))
∞∏
n=1

(1 + q16(2n−1)) . . .

K(q) = K(q2) = K(q4) = . . . = K(0) = 1

K( ) is invariant under the substitution of q2 for q, lim q2n = 0 .
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6.7 Assignment 5.

• Combinatorial Analysis

• Pólya - Szegő: Aufgaben und Lehrsätze aus der Analysis,

• Last revision January 2, 2015

Problems

I 22. The total number of non-negative integral solutions of the following
Diophantine equations is n+ 1:

x+ 2y = n; 2x+ 3y = n− 1; 3x+ 4y = n− 2; . . .

. . . nx+ (n+ 1)y = 1; (n+ 1)x+ (n+ 2)y = 0.

Solution : Consider the first Diophantine equation:

x+ 2y = n.

The generators for the solution are

1 + ξ + ξ2 + ξ3 + . . .

and

1 + ξ2 + ξ4 + ξ6 + . . .

where the exponents of ξ are multiples of 1 and 2 , respectively. The number
of non-negative integral solutions is the coefficient of ξn in the product of

(1 + ξ + ξ2 + ξ3 + . . .)× (1 + ξ2 + ξ4 + ξ6 + . . .).

where the series are extended past n. Only the first n + 1 terms of the first
generator and not more than the first [n

2
]+1 terms of the second generator can

contribute to the coefficient of ξn in the product. After formal summation

(1 + ξ + ξ2 + ξ3 + . . .)× (1 + ξ2 + ξ4 + ξ6 + . . .) =
1

(1− ξ)(1− ξ2)
.
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Therefore the number of non-negative integral solutions of the Diophantine
equation x+ 2y = n is the coefficient of ξn in the expansion of

1

(1− ξ)(1− ξ2)
.

Similarly, the number of the non-negative integral solutions of the Diophan-
tine equation 2x+ 3y = n− 1 is the coefficient of ξn−1 in the product of

(1 + ξ2 + ξ4 + ξ6 + . . .)× (1 + ξ3 + ξ6 + ξ9 + . . .).

Note that the exponents of ξ are multiples of 2 and 3 , respectively. Again,
after formal summation

(1 + ξ2 + ξ4 + ξ6 + . . .)× (1 + ξ3 + ξ6 + ξ9 + . . .) =
1

(1− ξ2)(1− ξ3)
.

Combining the first two Diophantine equations x+2y = n and 2x+3y = n−1,
the total number of their non-negative integral solutions is the coefficient of
ξn in the expansion of

1

(1− ξ)(1− ξ2)
+

ξ

(1− ξ2)(1− ξ3)
.

This idea can be extended to include the remaining equations

3x+ 4y = n− 2; . . . nx+ (n+ 1)y = 1; (n+ 1)x+ (n+ 2)y = 0.

Write

S(ξ) =
1

(1− ξ)(1− ξ2)
+

ξ

(1− ξ2)(1− ξ3)
+ . . .+

ξν

(1− ξν+1)(1− ξν+2)
+ . . .

The total number of non-negative integral solutions of the Diophantine equa-
tions

x+ 2y = n; 2x+ 3y = n− 1; 3x+ 4y = n− 2; . . .

. . . nx+ (n+ 1)y = 1; (n+ 1)x+ (n+ 2)y = 0.

is the coefficient of ξn in the expansion of S(x).
Next, observe the partial fraction decomposition

ξν

(1− ξν+1)(1− ξν+2)
=

1

ξ(1− ξ)

(
1

1− ξν+1
− 1

1− ξν+2

)
.
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Because

1

ξ(1− ξ)

(
1

1− ξν+1
− 1

1− ξν+2

)
=

1

ξ(1− ξ)

(
1− ξν+2

(1− ξν+1)(1− ξν+2)
− 1− ξν+1

(1− ξν+2)(1− ξν+1)

)
=

1

ξ(1− ξ)

(
(1− ξν+2)− (1− ξν+1)

(1− ξν+2)(1− ξν+1)

)
=

1

ξ(1− ξ)

(
(ξν+1 − ξν+2)

(1− ξν+2)(1− ξν+1)

)
=

1

ξ(1− ξ)

(
ξν(ξ1 − ξ2)

(1− ξν+2)(1− ξν+1)

)
=

1

ξ(1− ξ)

(
ξν(ξ1(1− ξ))

(1− ξν+2)(1− ξν+1)

)
=

ξν

(1− ξν+1)(1− ξν+2)
.

Therefore

S(ξ) =
1

ξ(1− ξ)

ν=∞∑
ν=0

(
1

1− ξν+1
− 1

1− ξν+2

)
.

This is a telescoping sum, after cancellation

S(ξ) =
1

ξ(1− ξ)

(
1

1− ξ
− 1

)
=

(ξ−1)(1 + ξ + ξ2 + ξ3 + . . .)× (ξ + ξ2 + ξ3 + . . .) =

(1 + ξ + ξ2 + ξ3 + . . .)× (1 + ξ + ξ2 + ξ3 + . . .) =

(1 + ξ + ξ2 + ξ3 + . . .)2 = 1 + 2ξ + 3ξ2 + 4ξ3 + . . .+ (n+ 1)ξn + . . .

as claimed.

I 23. The total number N of non-negative integral solutions of the following
Diophantine equations

x+ 2y = n− 1; 2x+ 3y = n− 3; 3x+ 4y = n− 5; . . .

is smaller than n+2; moreover the difference n+2−N is equal to the number
of divisors of n+ 2.
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Remark: The total number of divisors of number n ( including 1 and n )
is denoted by d(n). So if n = paqb . . . with p, q . . . distinct primes then

d(n) = (a+ 1)(b+ 1) . . .

Discussion: The left-hand sides of the Diophantine equations are the same
as in I. 22. Skipping the discussion on generators and formal summations
we have

Claim I: the total number N of non-negative integral solutions is the co-
efficient of ξn−1 in the expansion of

S(ξ) =
ν=∞∑
ν=0

ξ2ν

(1− ξν+1)(1− ξν+2)
.

Proof of Claim I: The number of solutions to the first Diophantine equa-
tion is equal to An−1 in the expansion

1

(1− ξ1)(1− ξ2)
=

ν=∞∑
ν=0

Aνξ
ν .

Similarly, the numbers of solutions to the second and third Diophantine
equations are given by Bn−3 in the expansion

1

(1− ξ2)(1− ξ3)
=

ν=∞∑
ν=0

Bνξ
ν

and Cn−5

1

(1− ξ3)(1− ξ4)
=

ν=∞∑
ν=0

Cνξ
ν ,

respectively. Therefore the combined number of the non-negative integral
solutions to the first three equations

x+ 2y = n− 1; 2x+ 3y = n− 3; 3x+ 4y = n− 5;

is An−1 +Bn−3 + Cn−5.
Multiplication by ξ2 and ξ4 shifts Bν to Bν+2 and Cν to Cν+4, respectively,

and the required number is the coefficient of ξn−1 in the final expansion,
whenever n ≥ 5
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Write

1

(1− ξ1)(1− ξ2)
+

ξ2

(1− ξ2)(1− ξ3)
+

ξ4

(1− ξ3)(1− ξ4)
=

ν=∞∑
ν=0

Aνξ
ν + ξ2

ν=∞∑
ν=0

Bνξ
ν + ξ4

ν=∞∑
ν=0

Cνξ
ν =

ν=∞∑
ν=0

Aνξ
ν +

ν=∞∑
ν=0

Bνξ
ν+2 +

ν=∞∑
ν=0

Cνξ
ν+4 =

ν=∞∑
ν=0

(Aν +Bν−2 + Cν−4)ξ
ν ,

B−2 = B−1 = C−4 = C−3 = C−2 = C−1 = 0.

Therefore, in this manner, we can build a solution that includes the non-
negative integral solutions to all Diophantine equations :

S(ξ) =
1

(1− ξ1)(1− ξ2)
+

ξ2

(1− ξ2)(1− ξ3)
+

ξ4

(1− ξ3)(1− ξ4)
+ . . .

Claim II:

S(ξ) =
ν=∞∑
ν=0

ξ2ν

(1− ξν+1)(1− ξν+2)
=

1

1− ξ

ν=∞∑
ν=0

ξν−1
(

1

1− ξν+1
− 1

1− ξν+2

)
.

Check:

ξν−1

1− ξ

(
1

1− ξν+1
− 1

1− ξν+2

)
=

ξν−1

1− ξ

(
1− ξν+2

(1− ξν+1)(1− ξν+2)
− 1− ξν+1

(1− ξν+1)(1− ξν+2)

)
=

ξν−1

1− ξ

(
ξν+1 − ξν+2

(1− ξν+1)(1− ξν+2)

)
=

ξν−1

1− ξ

(
ξν+1(1− ξ)

(1− ξν+1)(1− ξν+2)

)
=

ξ2ν

(1− ξν+1)(1− ξν+2)
.
√
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Claim III:

S(ξ) =
1

1− ξ

ν=∞∑
ν=0

ξν−1
(

1

1− ξν+1
− 1

1− ξν+2

)

=
1

1− ξ

[
ξ−1

(
1

1− ξ1
− 1

1− ξ2

)]
(ν=0)

+
1

1− ξ

[
ξ0
(

1

1− ξ2
− 1

1− ξ3

)]
(ν=1)

+
1

1− ξ

[
ξ1
(

1

1− ξ3
− 1

1− ξ4

)]
(ν=2)

+
1

1− ξ

[
ξ2
(

1

1− ξ4
− 1

1− ξ5

)]
(ν=3)

+ . . .

+
1

1− ξ

[
ξn−1

(
1

1− ξn+1
− 1

1− ξn+2

)]
(ν=n)

+
1

1− ξ

[
ξn
(

1

1− ξn+2
− 1

1− ξn+3

)]
(ν=n+1)

+ . . .

Next combine the terms of

1

1− ξν+2

from two consecutive terms ν, ν + 1, here found along slanting diagonals:

S(ξ) =
1

ξ

1

(1− ξ)2

+
1

1− ξ

(
ξ0

1

1− ξ2
− ξ−1 1

1− ξ2

)
(ν=0,1)

+
1

1− ξ

(
ξ1

1

1− ξ3
− ξ0 1

1− ξ3

)
(ν=1,2)

+
1

1− ξ

(
ξ2

1

1− ξ4
− ξ1 1

1− ξ4

)
(ν=2,3)

+ . . .

+
1

1− ξ

(
ξn

1

1− ξn+2
− ξn−1 1

1− ξn+2

)
(ν=n,n+1)

+ . . .
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S(ξ) =
1

ξ

1

(1− ξ)2

+
(ξ0 − ξ−1)

1− ξ

(
1

1− ξ2

)
+

(ξ1 − ξ0)
1− ξ

(
1

1− ξ3

)

+
(ξ2 − ξ1)

1− ξ

(
1

1− ξ4

)
+ . . .+

(ξn − ξn−1)
1− ξ

(
1

1− ξn+2

)
. . .

Noting that(
1

ξ3
ξ

1− ξ
− 1

ξ3
ξ

1− ξ

)
= 0

and (
ξ3

ξ3

)
= 1

we have

S(ξ) =
1

ξ

1

(1− ξ)2
+

(
1

ξ3
ξ

1− ξ
− 1

ξ3
ξ

1− ξ

)

+

(
ξ3

ξ3

)
(ξ0 − ξ−1)

1− ξ

(
1

1− ξ2

)
+

(
ξ3

ξ3

)
(ξ1 − ξ0)

1− ξ

(
1

1− ξ3

)

+

(
ξ3

ξ3

)
(ξ2 − ξ1)

1− ξ

(
1

1− ξ4

)
+ . . .+

(
ξ3

ξ3

)
(ξn − ξn−1)

1− ξ

(
1

1− ξn+2

)
. . .

By examining S(ξ) term by term we obtain
First:

1

ξ

1

(1− ξ)2
+

1

ξ3

(
ξ

1− ξ

)
=

1

ξ2
ξ

(1− ξ)2
+

1

ξ2

(
1

1− ξ

)
=

1

ξ2

(
ξ

(1− ξ)2
+

(
1

1− ξ

))
=

1

ξ2

(
ξ

(1− ξ)2
+

1− ξ
(1− ξ)2

)
=

1

ξ2
1

(1− ξ)2
.

Second:

− 1

ξ3
ξ

1− ξ
Third:(

ξ3

ξ3

)
(ξ0 − ξ−1)

1− ξ

(
1

1− ξ2

)
=

(
ξ

ξ3

)
(ξ0 − ξ−1)

1− ξ

(
ξ2

1− ξ2

)
=(

1

ξ3

)
(ξ − 1)

1− ξ

(
1

1− ξ2

)
= −

(
1

ξ3

)(
ξ2

1− ξ2

)
.
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Fourth:(
ξ3

ξ3

)
(ξ1 − ξ0)

1− ξ

(
1

1− ξ3

)
= −

(
1

ξ3

)(
ξ3

1− ξ3

)
. . .

N-th:(
ξ3

ξ3

)
(ξn−3 − ξn−4)

1− ξ

(
1

1− ξn−1

)
=

(
1

ξ3

)
ξ − 1

1− ξ

(
ξn−1

1− ξn−1

)
=

−
(

1

ξ3

)(
ξn−1

1− ξn−1

)
.

S(ξ) =
1

ξ2
1

(1− ξ)2

−
(

1

ξ3

)(
ξ

1− ξ

)
−
(

1

ξ3

)(
ξ2

1− ξ2

)

−
(

1

ξ3

)(
ξ3

1− ξ3

)
. . .−

(
1

ξ3

)(
ξn−1

1− ξn−1

)
. . .

=
1

ξ2
1

(1− ξ)2
−
(

1

ξ3

)
ν=∞∑
ν=1

ξν

1− ξν
.

Next, we examine the main term

1

ξ2
1

(1− ξ)2
=

1

ξ2
∗ 1

(1− ξ)
∗ 1

(1− ξ)

=
1

ξ2
∗ (1 + ξ + ξ2 + . . .) ∗ (1 + ξ + ξ2 + . . .)

=
1

ξ2
∗ (1 + 2ξ + 3ξ2 + . . .+ (n+ 1)ξn + (n+ 2)ξn+1 + (n+ 3)ξn+2)

= (. . .+ (n+ 1)ξn−2 + (n+ 2)ξn−1 + (n+ 3)ξn + . . .)

This shows that the coefficient of ξn−1 is (n+ 2) in the main term. Now we

come to the secondary term without

(
1

ξ3

)
.

Claim IV:
ν=∞∑
ν=1

ξν

1− ξν
= τ(1)ξ + τ(2)ξ2 + . . .+ τ(ν)ξν+

where τ(ν) denotes the number of divisors of ν.
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Discussion of Claim IV: Let us pick a number - say 6 - and let us see
what contributes to the coefficient of ξ6.

ξ1

1− ξ1
= ξ + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + . . .

ξ2

1− ξ2
= ξ2 + ξ4 + ξ6 + ξ8 + . . .

ξ3

1− ξ3
= ξ3 + ξ6 + ξ9 + . . .

ξ6

1− ξ6
= ξ6 + ξ12 . . .

Clearly, expansions for ν = 4, 5, or ν ≥ 7 would not contribute. Therefore
the coefficient of ξ6 is equal to 4, the number of ν -s that divide 6. Further,
pick another number - say 7 - . Only two expansions have ξ7 in them:

ξ1

1− ξ1
= ξ + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + ξ8 + . . .

ξ7

1− ξ7
= ξ7 + ξ14 + . . .

Of course, 7 is a prime, and τ(7) = 2. This not a proof, but we are convinced.
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6.8 Miscellaneous Notes

6.8.1 Current interests

Spartan Old School Tutorials: 3 levels, undergraduate standards

Computer Skills: Basic programming with Fortran and C; Math Tools,
Graphics, Numerical and Symbolic Computations; Latex typesetting,
On-line Tutorials.

Classics in Pure Math: Pólya - Szegő: Aufgaben und Lehrsätze aus der
Analysis, Konvexer Körper , Vinogradov-Turán

Classics in Applied Math : Ciarlet, Birkhoff-Rota, Geÿza Freud

Mathematical Modelling and Numerical Analysis: Smith,
Morton- Mayers, Ames

6.8.2 Envoy

” I am afraid, Watson, that I shall have to go. ”
said Holmes as we sat down together to our breakfast on one morning.
” Go! Where to?”
” To Dartmoor, to King’s Pyland.”
I was not surprised.
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